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1 INTRODUCTION

Cellular automaton (CA) and reaction-diffusion (RD) systems are
both mathematical models capable of computing complex state
transitions and simulating natural and physical phenomena (hence,
our usage of the phrase “Nature Inspired Design”). For example,
given the elementary CA Rule 30, a cellular automaton has the
capability to generate a pattern that resembles a Conus Textile
snail’s shell.

Although CA and RD models have been studied quite extensively,
the colors used in each iteration of the algorithms have not been ex-
perimented with as often. In the simplest case of binary automaton,
a cell is most commonly colored white (alive) or black (dead), result-
ing in rather dull, bicolored generations. In plain reaction-diffusion
models, the instances are often greyscale.

In our project, we applied certain color schemes to CA and RD
instances primarily for data visualization and aesthetic purposes.
For CA, we experimented with 3D totalistic cellular automata rules
and applied certain color palettes to extract additional insights (e.g.
of generations a cell has been alive). Specifically, we developed color
palettes using the k-means algorithm and the idea of equidistant col-
ors, as well as monochromatic, pastel, and similar hue color palettes.
For both the CA and RD models, we leveraged their biologically
plausible mechanism, combining the generated instances with smart
color palettes to create realistic looking skin pattern. In other words,
we define and created a new, simple procedure to generate textures
using CA and RD rules. These seemingly distinct tasks all share the
common goal of developing creative color palettes and applying
them to CA and RD models in meaningful ways.

2 TOTALISTIC 3D CELLULAR AUTOMATA

We implemented a 3D outer totalistic CA starting from a 6x6x6 cube
of live cells, where cell state at time ¢ is defined by its state at time
t-1 and the sum of the states of its neighbors at time ¢-1. At every
generation, the grid cell becomes an outlined cube (alive) if the sum

Authors’ addresses: Randy Fan, Department of Computer Science and Engineering,
University of California, Berkeley; Kenny Chen, Department of Computer Science and
Engineering, University of California, Berkeley.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
XXXX-XXXX/2019/12-ART $15.00

https://doi.org/

of the total number of cubes around it equals the number set by a
rule.
o Our rules are defined the following way:
— Example rule: [[4, 9], [5, 6, 3]]
% 4,9 = a cell needs to have 4 OR 9 live neighbors to con-
tinue living
* 5, 6,3 = a cell needs to have 5 OR 6 OR 3 live neighbors
to be born (dead — live)

3 EQUIDISTANT COLORS

Equidistant color palette generation is useful in many cases, such as
cross-referencing with a key in some data visualization, for example.
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Fig. 1. HSL color-picker tool with visually equidistant color palette genera-
tion using color interpolation.

We use an interpolation-based algorithm to find perceptually
equidistant colors. Given two colors, ¢ and ¢z, and an integer n
that denotes the number of unique colors, we generate n colors that
are between ¢ and ¢z and are visually equidistant. We essentially
are sampling points along the line formed by points ¢ and ¢, each
with equal distance from each other. It is important that we make
the two endpoint colors relatively distinct. For example, it’s a bad
idea to have endpoint colors that are both shades of blue because it
will be harder to tell the colors apart:

0
Fig. 2. Having the endpoint colors be similar leads to a palette in which the
colors are difficult to discern.

We compared palettes generated using interpolation over HCL
as well. We initially only interpolated over the RGB color space due
to ease of implementation. Though many of the palettes generated
seemed to have visually equidistant colors, many contained colors
which were not perceptually equidistant.
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Fig. 3. It is difficult to discern the blues in the RGB palette.

As can be seen in the figure, it is difficult to tell the blues apart
in the RGB palette. This is due to the fact that the RGB space is
not perceptually uniform. We used a perceptually uniform color
space, CIELAB, to solve this problem. Though interpolating over
the CIELAB color space corrected our problems related to creating
visually equidistant color palettes, in our application it was not
necessarily important to make this distinction. This is because when
the palette is applied to our CA, we found it more important to just
distinguish whether cells had color closer to either of the endpoints.

RGB HCL

Fig. 4. Application of palettes created using interpolation over RGB, CIELAB,
and HCL color spaces.

With the palettes generated using interpolation, we were easily
able to answer questions like whether the CA rule favors cells born
in earlier or later generations depending on whether there are more
cells of color closer to one of the two endpoint colors.

4 K-MEANS ALGORITHM

Fig. 5. Application of k-means palette.

To obtain unique, distinct colors for x generations, we used the
k-means clustering algorithm to divide the CIELAB color space.
Specifically, we sample the CIELAB color space and run k-means on
these data points to get N clusters. From these clusters, we select the
centroid of each as a color in our palette. Because the CIELAB color
space has a wider range than the RGB color space, it was necessary
to convert LAB values to the nearest RGB value because some of
these LAB values do not have a corresponding RGB representation.
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Fig. 6. First 8 generations using the K-means color palette and the rule
[[1.23], [1,2.3]]

We found that there were two main applications of palettes cre-
ated in this manner. The first was that it was easy to tell, at a glance,
the number of cells which were born in different generations. The
second application was that we could easily visualize the number of
consecutive generations a cell remained alive. We were also able to
constrain the CIELAB space while sampling data points for k-means
to create palettes from a subspace of the CIELAB color space.

Pastel Monochromatic

Fig. 7. First 8 generations using the K-means color palette and the rule
[[1.23], [1,2.3]]

5 MONOCHROMATIC AND PASTEL

Creating palettes by constraining the CIELAB color space in this way
was mainly performed with the goal of improving the aesthetics
of the CA generated. This extension to our algorithm was done
for generative artistic purposes and because adding color in this
manner yields more insights and is more interesting than the usual
black-white representation of these models.The sampled subspace
also fulfills the same applications described previously using the
k-means algorithm.

The monochromatic color palette returns a set of colors that vary
in saturation and lightness, but have the exact same hue. So, in our
algorithm we only sample points over the CIELAB color space with
a hue equal to some predefined value.

A pastel color is defined to have high value and low to inter-
mediate saturation [2]. We defined our pastel colors as having a
saturation value between 15 and 40 and a value between 65 and 100.
Fig. 6. Our pastel palette containing 8 colors Fig. 7. Generation 10
using the Pastel color palette and the rule [[1,2,6],[1,2,3]]



6 NATURE INSPIRED DESIGN: SKIN PATTERNS

Fig. 8. Biologically-inspired designs.

The biologically plausible mechanisms of cellular automaton and
reaction-diffusion systems can exhibit animal skin patterns that
come from nonlinear dynamical microscopic systems of cell inter-
actions [4]. As we researched and looked into specific examples
of these generated skin instances, we noticed most examples were
black and white or grayscale (shown in Figure 8). Thus, for the sec-
ond part of our project, we extracted color schemes representative
of real animal skin and input those colors into the of CA and RD
algorithm used to mimic skin patterns.

Specifically, we implemented skin algorithms (one using the Gray-
Scotts reaction-diffusion model and the other using probabilistic
totalistic cellular automata) to simulate cheetah and ocellated lizard
skin. We chose these specific animal skins because we were able
to find accurate parameters that could realistically simulate those
skins [4]

Our work on simulating animal skin reinforces the idea that cel-
lular automaton and reaction-diffusion system are not just abstract
computational systems, but capable of simulating natural and phys-
ical phenomenon quite realistically with the addition of color.

7 RGB BINNING

To add more realistic coloring to the generated animal skin instances,
we needed to obtain color schemes representative of real animal skin.
In order to do this, we developed a simple RGB binning approach
to extract colors from images. We chose to implement RGB binning
because it doesn’t overrepresent dominant colors (as could be the
case in K-means). For example, if the input image is a single color,
the color will get grouped into one bin, while K-means would assign
several clusters to that color. Also, RGB binning ensures details are
captured in the result (e.g. a color that only takes up a small part of
an image will still be located in a cube grid). However, one of the
main disadvantages of RGB binning is that it could separately count
clusters of pixels located near a boundary.

The main purpose of RGB binning in our project is to extract
dominant colors from a real image of the relevant animal skin, and
feed the color scheme into the specific animal skin algorithm.

Specifically, we first extract colors from a real image of animal
skin. Then, we partition the image’s RGB values into a uniform 3D
grid. Next, we split the 3D grid into X cube grids and average the
color values. Lastly, we return the top Y most dominant colors. Note
X and Y are parameters we define.

The figure below displays the steps involved in obtaining the top
4 dominant colors from a real image of cheetah skin.
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Fig. 9. RGB binning process.

8 GRAY-SCOTT MODEL

In order to simulate the cheetah skin pattern, we needed a robust
reaction-diffusion model. We chose to use the classic Gray-Scott
model because it has a surprising variety of interesting spatiotem-
poral patterns, often reminiscent of patterns occurring in nature.
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Fig. 10. Gray-Scott equations.

The Gray-Scott Model generates patterns that represent the spa-
tial concentration of two chemicals, A and B (in our project, these
chemicals can be thought of as skin pigmentation chemicals). The
set of equations that define the update rule are shown in Figure 10.
The Feed rate represents how much chemical A is being added to
the system at every iteration. The Kill rate represents how much
chemical B is being removed from the system at every iteration. The
Reaction rate represents the likelihood chemical A will unite with
two chemical B. If A is connected to two B’s, chemical A would
transform into B. The Diffusion and Laplacian functions modify
the concentration of chemical A or B by introducing neighborhood
effects (convolution) and simulating chemical diffusion.

9 CHEETAH SKIN PATTERN

We first researched parameters values that could realistically gen-
erate cheetah skin pattern. We decided to use Karl Sim’s provided
Gray-Scott parameters for a “mitosis” simulation, where k = 0.0367,
k =0.0649, Da = 1, Db = 0.5 [3]. We defined delta t to be 1 and used
the default 2D Laplacian functions.

We used our color binning algorithm on an image of a real chee-
tah skin to generate a color palette of the image’s top four dominant
colors. Four was chosen because it seemed like a rough approxima-
tion of the number of distinct colors present in the real cheetah skin
image. We then passed in the generated color scheme along with
Karl Sim’s parameter values as inputs into Gray-Scott model. Lastly,
we assigned each cell a color based on its percentage of chemical A
within the cell. Specifically, we manually defined four values in [0,
1] that each belong to one of the four dominants colors. Chemical
A values that fall in between any of the 4 values are assigned an
interpolated color.
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Fig. 11. Process for generating cheetah skin using Gray-Scott reaction dif-
fusion.

10 PROBABLISTIC TOTALISTIC CELLULAR AUTOMATA

To implement the ocellated lizard skin pattern described in the
next section, we used a probabilistic totalistic cellular automata
model [4]. The implementation of the model is very similar to the
3-dimensional outer totalistic cellular automata model described
in section 3. The main difference between these two models lies in
the definition of their rule sets. In outer totalistic CA, if a cell has
the number of neighbors required to continue living or be reborn,
it will do so. In probabilistic totalistic CA, meeting the number of
neighbors requirements to continue living or be reborn does not
guarantee a change in state. Instead, each change in state is defined
by a probability distribution.

11 OCELLATED LIZARD SKIN

To simulate an ocellated lizard skin, we implemented a hexagonal
probabilistic CA model with probability distributions based on the
distributions depicted in the paper, A living mesoscopic cellular au-
tomaton made of skin scales [4]. However, we had to make several
modifications to the probability distributions in the paper because
the paper was a biological study of real lizard scales (e.g. the scales
weren’t perfectly hexagonal as depicted in our CA model). For ex-
ample, the probability distributions used in the paper had assigned
probabilities for scales with up to 7 neighbors, while our CA model
is limited to the 6 neighbors corresponding to the number of sides
of a hexagon. To convert the paper’s probability distribution to one
we could use, we simply removed the probability corresponding to
7 neighbors.

Furthermore, the research paper only focused on the transition
of green to black and black to green states. An ocellated lizard has
brown/white skin at an early age, and then the skin transforms to
black/green when the lizard is fully grown. Thus, the paper did not
consider the early stages of color in a ocellated lizard skin, namely
brown to white and white to brown. Since we want to visualize these
color transformation as well, we came up with our own transition
probabilities for those colors. We defined the probability distribution
of white to brown to be the same probability distribution as black
to green, and the probability distribution of brown to white had a
similar distribution to black to green.

We randomly initialized our CA to start with 60 percent brown
and 40 percent white scales, and allowed the brown and white scales
to start turning into green or black after the 100th iteration of the
algorithm. This also meant we had to define additional probability
distributions for white to black/green and brown to black/green.
The probabilities we used were not in the research paper, and we
set based on the realism of the visually generated instances.
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Fig. 12. Process for generating lizard skin.

Finally, we applied the color binning algorithm to two input
images (the brown-white image represents the color of lizard skin
at an early age, while the green, black color is the lizard’s skin color
when the lizard is fully grown). Using these color schemes and the
probability distributions, we were able to simulate the appearance
of ocellated lizard skin over time.

12 CONCLUSION AND FUTURE WORK

To summarize, our project can be divided up into two main goal-
s/parts. We first wanted to make it easier to visualize the different
generations present in one instance of Cellular Automaton (CA).
Our second goal was to develop a procedure to generate skins by
leveraging the biologically plausible mechanisms of CA and RD and
a color binning algorithm.

We hope to extend these findings to other classes of CA, because
application of color to CA has not been explored in depth, espe-
cially with three-dimensional CA. The properties and applications
described can likely be easily extended to two-dimensional totalistic
CA and possibly other classes of CA.

For example, the generations a cell was first born in, as visu-
alized using the palettes described previously, can be applied to
two-dimensional totalistic CA in an analogous way (and so too can
be extended to other dimensions).

Furthermore, we would like to explore more applications of color
palettes to CA. It would be interesting to explore properties such
as the density of a certain rule, for example. This would be done by
assigning a certain color to a cell based on the number of neighbors
it has, or some similar method. In the future, we would also like to
explore how to describe the symmetry of CA in some way using
colors.

There is also the problem, in the three-dimensional case especially,
where it is difficult to see a majority of the cells because they are
blocked by others closer to the viewer. We hope to somehow resolve
this issue in some way using properties like the opacity of the cells,
for example.

Regarding our work on procedurally generated animal skin, we
would like to further explore other algorithms that are known to
mimic skin patterns. We would also like to discover new parameter
values in existing models (e.g. Gray-Scott) that could mimic other
animals.
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