
Automatic Detection of Interesting Cellular Automata
CS	294-082	–	Experimental	Design	for	Multimedia	Machine	Learning	(Graduate)	–	Fall	2020	

			

Randy	Fan	(Student	Author)		
Electrical	Engineering	and	Computer	Sciences	

University	of	California,	Berkeley	
randyfan@berkeley.edu	

Qitian	Liao	(Student	Author)	
Electrical	Engineering	and	Computer	Sciences	

University	of	California,	Berkeley	
liao1024@berkeley.edu	

		
ABSTRACT	
Our	project	explores	the	potential	of	using	Convolutional	
Neural	 Networks	 (CNNs)	 to	 detect	 interesting	 two-
dimensional	outer	totalistic	cellular	automata.	A	cellular	
automaton	is	a	collection	of	colored	cells	on	a	grid	that	
evolves	 according	 to	 a	 set	 of	 neighborhood	 rules.	 The	
rules	 are	 applied	 iteratively	 for	 as	many	 time	 steps	 as	
desired	to	generate	new	grid	configurations.	

A	 challenge	 that	 two-dimensional	 cellular	 automata	
faces	 is	 a	 large	 parameter	 search	 space	 to	 generate	
patterns	within.	Assuming	we	use	a	Moore	neighborhood	
and	a	maximum	of	10	possible	transition	states,	there	are	
29	survival	rules,	29	born	rules,	and	210	states,	which	leads	
to	a	total	of	228	combinations	of	rules.	Manually	searching	
for	these	patterns	would	be	unrealistic	as	users	may	have	
to	 randomly	 go	 through	 hundreds	 if	 not	 thousands	 of	
random	rules	before	finding	an	interesting	one.		

In	 this	 paper,	 we	 will	 discuss	 our	 approach	 to	 detect	
rules	 and	 patterns	 that	 feature	 gliders	 using	 image	
processing,	CNNs,	and	ImageNet.	Note	this	project	solely	
focuses	on	interesting	rules	with	gliders,	not	other	rules	
that	could	be	subjectively	labeled	as	interesting,	such	as	
intricate	still	life	and	oscillating	patterns.		

KEYWORDS	
Cellular	 Automata,	 Image	 Processing,	 Convolutional	
Neural	 Network,	 ImageNet,	 Entropy	 Evaluation,	
Dynamic	patterns	

1	 INTRODUCTION	/	PROBLEM	
In	this	paper,	we	focus	on	outer	totalistic	generations	of	
two-dimensional	 cellular	 automata.	 They	 consist	 of	 a	
two-dimensional	grid	of	cells,	which	live,	die,	or	are	in	a	
“dying”	transition	state	depending	on	a	set	of	rules.	The	
cells	are	updated	according	to	their	previous	values,	and	
the	 sum	 of	 the	 values	 of	 the	 other	 cells	 in	 the	
neighborhood.	We	decided	to	use	Moore	neighborhood	
for	 the	 update	 rules,	 which	 are	 the	 surrounding	 eight	
cells	of	a	center	cell.	An	alternative	would	be	Neumann	
neighborhood,	 which	 only	 includes	 four	 neighboring	
cells.		

Interesting	 rules	 are	 defined	 specifically	 as	 those	 that	
have	clear	gliders	(small	patterns	that	move	across	the	
grid	 with	 some	 individual	 characteristics).	 Any	 other	
rules	 are	 classified	 as	 boring,	 meaning	 they	 lead	 to	 a	
pattern	 which	 is	 static	 noise	 with	 no	 discernable	
patterns	 moving	 across	 the	 screen.	 In	 Figure	 1.1	 are	
some	of	the	famous	gliders	that	have	been	discovered	so	
far1.	

	

	
Figure	1.1:	Four	examples	of	discovered	gilder	patterns	

(Top	Left)	Brian’s	brain.	(Top	Right)	Burst.	
(Bottom	Left)	Brain6.	(Bottom	Right)	Star	Wars.	

	
After	manually	inspecting	40,000	interesting	patterns,	it	
seemed	that	interesting	rules	would	produce	interesting	
results	regardless	of	the	 initial	configuration.	Similarly,	
boring	 rules	 are	 expected	 to	 always	 produce	 boring	
results.		

Under	 most	 circumstances,	 it	 is	 impossible	 to	 tell	
whether	a	rule	is	interesting	or	boring	just	by	looking	at	
the	 parameters.	 A	 user	 would	 have	 to	 randomly	 go	
through	 thousands	 of	 random	 rules	 before	 finding	 an	
interesting	one.	Even	more	daunting,	the	total	number	of	
combinations	 can	 easily	 exceed	 billions.	 Therefore,	
automatic	 detection	 of	 interesting	 rules	 will	 be	 very	
helpful,	and	it	will	make	sure	that	users	do	not	have	to	
manually	go	through	the	process.		

2

2	 	BACKGROUND	/	RELATED	WORK
There	have	been	many	attempts	to	find	interesting	two-
dimensional	 cellular	 automata	 rules.	 The	 most	 naïve	
approach	is	to	repeatedly	create	random	neighborhood	
rules	and	wait	to	see	if	it	generates	an	interesting	result.	
Another	 approach	 that	 works	 for	 lower	 dimension	
cellular	automata	(specifically	one-dimensional	cellular	
automata)	is	simply	brute	forcing	all	the	possible	sets	of	
rules	and	manually	inspecting	which	ones	are	interesting	
after	they	have	been	generated	and	frames	are	saved.	An	
alternative	 naïve	 approach	 is	 to	 modify	 existing	
interesting	 rules,	 such	 as	 John	 Conway’s	 Game	 of	 Life	
rules,	to	generate	similar	or	refined	patterns.	However,	
usually	just	changing	a	single	parameter	value	could	lead	
to	 a	 widely	 different	 result.	 In	 other	 words,	 the	
interesting	results	are	not	necessarily	clustered	together	
in	the	search	parameter	space.	

There	exist	other	more	computational	methods	used	to	
determine	the	type	of	cellular	automata	generated.	For	
example,	 Chris	 Langton	 created	 a	 cellular	 automata	
lambda	value	that	is	computed	based	on	the	number	of	
cells	that	have	been	born	at	that	time	step	and	dividing	it	
by	the	total	number	of	cellular	automata	cells.	This	gave	
a	 decimal	 value	 between	 0	 and	 1.	 	 Based	 on	 his	
classification	system,	lambda	values	within	0.1	and	0.15	
means	 a	 good	 rule	 that	 could	 require	 further	
investigation2.	

As	far	as	we	know,	none	of	these	described	methods	have	
been	able	to	reliably	detect	rules	that	may	be	subjectively	
determined	 as	 interesting	 (e.g.,	 they	usually	 find	 static	
noise).	 Thus,	 detecting	 interesting	 gliders	 in	 two-
dimensional	 outer	 totalistic	 cellular	 automata	 is	 an	
unsolved	 problem	 that	 we	 attempt	 to	 tackle	 in	 this	
project.	

3	 	METHOD	
We	first	collected	the	two-dimensional	cellular	automata	
data	 needed	 for	 training	 and	 testing.	 This	 entailed	
building	 a	 data	 collection	 pipeline	 from	 scratch	 to	
generate	a	sequence	of	raw	frames	and	then	stitching	the	
selected	images	to	represent	each	of	the	patterns.	Later,	
several	 models	 were	 tested	 and	 analyzed	 for	 the	 best	
results.	We	trained	the	data	with	a	CNN,	and	performed	
hyperparameter	 tuning,	 image	 feature	 extraction	 via	
NASNetLarge,	and	entropy	analysis.		

3.1	 	Data	Collection	Pipeline	
To	 obtain	 boring	 rules,	 we	 manually	 went	 through	
random	 examples,	 and	 collected	 rules	 that	 died	 out	
immediately,	generated	static	noise,	or	boring	non-glider	
patterns.	 For	 interesting	 rules,	 we	 used	 Cellular	
Automata	 Rules	 Lexicons1,3,	 and	 examples	 provided	 in	

Visions	of	Chaos5	and	only	recorded	those	with	gliders.	
We	ended	up	with	105	boring	and	35	interesting	sets	of	
rules.		

We	 generalized	 the	 cellular	 automata	 generation	
algorithm	as	follows:		
Cellular	Automata	Generation	Algorithm	
if center_cell == max_state:
 for num_neighbors in survive_arr:
 if total - 1 == num_neighbors:
 return center_cell
 return center_cell - 1
elif center_cell != 0 and center_cell != max_state:
 return center_cell - 1
else:
 for num_neighbors in born_arr:
 if total == num_neighbors:
 return max_state
 return 0
We	 used	 the	 algorithm	 above	 to	 generate	 frames	 and	
create	 images.	We	ran	 the	 rules	using	a	 random	 initial	
configuration.	Next,	we	applied	data	augmentation	due	
to	 the	 limited	 number	 of	 rules	 that	 we	 identified.	We	
reused	 the	 boring	 rules	 10	 times,	 and	 the	 interesting	
rules	 30	 times	 with	 different	 initial	 configuration.	 We	
generated	140	images	for	each	of	the	patterns,	and	saved	
images	80-120.	

Our	next	step	is	image	stitching.	Frames	100–108	of	the	
evolution	were	stitched	together	in	a	3×3	grid.	This	was	
designed	to	 increase	 the	algorithm’s	robustness	and	to	
control	 better	 for	 interesting	 configurations	 that	 have	
some	 seemingly	 uninteresting	 frames	 interspersed	
throughout	 their	evolutions.	As	raw	data,	 these	 images	
were	quite	large	given	our	RAM	allocation.	Running	the	
notebook	tended	to	crash	the	kernel	so	we	settled	for	less	
resolution,	downsampling	 the	1188×1188	pixel	 images	
to	300×300.	This	tradeoff	allowed	us	to	manipulate	and	
do	 machine	 learning	 on	 the	 data	 without	 too	 much	
computational	 expense.	 We	 assembled	 training	 data	
with	a	50%	interesting	and	50%	boring	split.			

As	 a	 final	 preprocessing	 step,	 the	 [0,	 255]	 valued	
matrices	representing	the	images	were	normalized	using	
simple	 division	 to	 [0,	 1].	 This	 improved	 performance	
greatly	 in	 practice.	 Many	 of	 the	 CNN	 architectures	we	
tried	produced	sub-baseline	results	before	this	step.	The	
next	part	of	the	optimization	process	was	a	question	of	
model	architecture	and	hyperparameter	tuning.	

3.2	 	Data	Training	with	CNN	
For	our	model	architecture,	we	implemented	a	CNN.	This	
seemed	like	the	logical	choice	given	the	fact	that	we	were	
trying	 to	 classify	 images.	We	 tried	 many	 architectural	
parameters	and	hyperparameters	in	order	to	create	the	

3

best	model.	Some	of	these	included:	convolutional	filter	
size,	dense	layers	at	output,	pooling	kernel	size,	type	of	
pooling,	dropout,	and	batch	normalization.		
	
We	 found	 that	 the	 greatest	 improvements	 happened	
after	 adding	 dropout	 and	 batch	 normalization.	 There	
was	 also	 a	 significant	 increase	 in	 accuracy	 after	
increasing	 the	 convolutional	 filter	 size	 of	 the	 first	
convolutional	layer	to	5×5	from	3×3.	We	believed	this	is	
because	 3×3	 is	 too	 small	 to	 capture	 much	 of	 the	
complexity	of	the	interesting	configurations.	Given	a	3×3	
window,	many	of	the	interesting	shapes	look	like	noise.	

	
We	 tried	many	 things	 that	did	not	work	 in	addition	 to	
those	that	did.	Increasing	the	pooling	kernel	size,	using	
average	pooling	 instead	of	max	pooling,	 increasing	 the	
number	of	filters	in	the	convolutional	layers	(from	64	in	
each),	 and	 increasing	 the	 second	 convolutional	 layer’s	
filter	 size	 from	 3×3	 to	 5×5,	 all	 resulted	 in	 worse	
performance	 by	 the	 validation	 accuracy	 metric.	 We	
found	 that	 increasing	 the	 epochs	 past	 30	 resulted	 in	
overfitting.	

Eventually,	we	used	the	architecture	described	in	Figure	
1.2.		

	
Figure	1.2:	Structure	of	the	convolutional	neural	network.	

We	were	able	to	achieve	93.44%	training	accuracy	and	
84.12%	 testing	 accuracy	 on	 the	 testing	 set	 with	 10%	
interesting	data.	The	test	recall	is	100%,	indicating	every	
interesting	 configuration	 has	 been	 correctly	 labeled	 as	
such.		
	
3.3	 	Feature	Extraction	
We	eventually	need	to	feed	the	results	into	Brainome.ai,	
which	 requires	 column	data.	 Therefore,	we	 decided	 to	
move	on	to	feature	extraction	and	convert	our	data	into	
a	 well-organized	 CSV	 format.	 We	 used	 a	 pre-trained	
NASNet-Large	 Model,	 which	 is	 a	 convolutional	 neural	
network	 that	 is	 trained	on	more	 than	a	million	 images	
from	 the	 ImageNet	 database.	 For	 each	 of	 the	 stitched	
images,	the	model	returns	1000	selected	features.		
Image	Feature	Extraction	Algorithm	
model_name="nasnetalarge"

model=pretrainedmodels.__dict__[model_name](num_classes
=1000, pretrained='imagenet')
model.eval()
load_img = utils.LoadImage()
tf_img = utils.TransformImage(model)
features_file = open("file.csv", "ab")
feature_data = []
for i in range(len(image_paths)):
 input_img = load_img(image_paths[i])
 input_tensor = tf_img(input_img)
 input_tensor = input_tensor.unsqueeze(0)
 input = torch.autograd.Variable(input_tensor,
requires_grad=False)
 output_logits = model(input)
 output_features = model.features(input)
 output_logits = model.logits(output_features)
 output_logits = output_logits[0].detach().numpy()
 row_data = np.append(output_logits, labels[i])
 feature_data = np.append(feature_data, row_data)	
We	then	fed	the	data	into	Brainome.ai	and	obtained	the	
following	information	about	Decision	Trees	and	Neural	
Networks.	The	decision	tree	has	1026	parameters,	and	
the	 estimated	 memory	 equivalent	 capacity	 for	 neural	
networks	is	11034	parameters.	Expected	generalization	
using	Decision	Tree	 is	2.05	bits/bit	and	using	a	Neural	
Network	is	0.19	bits/bit.	

3.4	 	Entropy	Evaluation	
We	decided	to	measure	the	entropy	of	the	input	images	
to	determine	if	there	is	a	relationship	between	the	label	
(boring	 and	 interesting)	 and	 the	 statistical	measure	 of	
randomness	in	the	images.	
Image	Entropy	Function
def compute_entropy(signal):
 lensig = signal.size
 symset = list(set(signal))
 numsym = len(symset)
 propab = [np.size(signal[signal == i]) / (1.0 * lensig) for i in
symset]
 entropy = np.sum([p * np.log2(1.0 / p) for p in propab])
 return entropy
We	 iterated	 through	 all	 the	 stitched	 frames	 and	
computed	their	entropies	using	the	above	function.	We	
then	 plotted	 the	 entropy	 values	 of	 the	 boring	 and	
interesting	images	on	one-dimensional	line	plots	(Figure	
1.3).			

Boring	 images	 had	 entropy	 values	 that	 spread	 evenly	
from	0	 to	 3.5,	with	 a	 small	 gap	 between	 0.5	 and	 0.75.	
Interesting	images	were	concentrated	in	the	0	to	2	range,	
which	 makes	 intuitive	 sense	 since	 interesting	 images	
have	less	noise	and	entropy	compared	to	boring	images	
on	average.	It	should	be	noted	the	minimum	entropy	for	
boring	 images	was	0.0	while	 the	minimum	entropy	 for	

4

interesting	was	0.0318.	This	is	because	frames	that	had	
no	live	cells	were	always	labeled	and	classified	as	boring.		
	

Figure	1.3	Entropy	for	Boring	and	Interesting	Images	

The	entropy	values	suggest	adding	features	identifying	
if	the	image	entropy	is	above	3	or	equal	to	exactly	0	may	
be	beneficial	for	the	model	accuracy.

4	 	FUTURE	WORK	
Automatic	detection	of	interesting	cellular	automata	is	a	
project	 that	 has	 not	 yet	 been	 successfully	 done	 in	 the	
past.	 This	means	 our	 project	 is	 breaking	 new	 grounds	
and	 has	 potential	 to	 explore	 many	 alternative	
possibilities.	Our	next	step	includes	customized	entropy	
and	feature	engineering.	We	still	plan	to	use	the	frames	
from	100	to	108.	But	instead	of	computing	the	entropy	of	
the	stitched	image	directly,	we	will	load	the	nine	images	
as	arrays	and	calculate	an	elementwise	(pixel-by-pixel)	
difference.	The	norm	of	the	difference	will	be	used	as	the	
new	entropy,	and	 the	difference	vector	will	be	used	as	
the	feature	vector.	We	hope	that	the	customized	entropy	

and	 features	will	 provide	 us	with	 even	more	 accurate	
results.		

5	 	CLASS	QUESTIONNAIRE	
Here	the	paper	will	answer	the	eight	questions	posted	by	
Professor	Friedland	to	evaluate	machine	learners.		

Q1:	 	 What	 is	 the	 variable	 the	 machine	 learner	 is	
supposed	 to	predict?	How	accurate	 is	 the	 labeling?	
What	is	the	annotator	agreement	(measured)?		
Given	 a	 set	 of	 rules	 and	 an	 initial	 configuration,	 the	
machine	learner	aims	to	predict	whether	the	generated	
cellular	automata	pattern	will	be	 interesting	or	boring.	
CNN	 gives	 a	 training	 accuracy	 of	 93.44%	 and	 testing	
accuracy	of	84.12%.		

We	 found	 the	 boring	 rules	 by	 going	 through	 random	
rules	together	and	picking	all	the	ones	that	did	not	have	
glider	patterns.	To	obtain	 the	annotator	agreement	 for	
interesting	 rules,	 we	 calculated	 Cohen’s	 kappa	 when	
labeling	 rules	 from	 lexicons	 and	 other	 sources.	 These	
sources	contained	a	total	of	147	potentially	 interesting	
rules.	We	both	agreed	to	 include	35	of	those	rules	that	
had	clear	glider	patterns	and	excluded	107.	There	were	
3	rules	member	#1	wanted	to	include	and	the	other	did	
not,	and	2	rules	member	#2	wanted	to	include	that	was	
not	 included	 by	 member	 #1.	 This	 gives	 us	 96.59%	
agreement	 and	 a	 Cohen’s	 k	 equal	 to	 0.91,	 signifying	
almost	perfect	or	perfect	agreement.		

Q2:	 	 What	 is	 the	 required	 accuracy	 metric	 for	
success?	 How	 much	 data	 do	 we	 have	 to	 train	 the	
prediction	of	the	variable?	Are	the	classes	balanced?	
How	many	modalities	could	be	exploited	in	the	data?	
Is	there	temporal	information?	How	much	noise	are	
we	expecting?	Do	we	expect	bias?	
The	 classes	 are	 balanced	 because	 the	 data	 contains	
exactly	 50%	 interesting	 rules	 and	 50%	 boring	 rules.	
There	 are	no	modalities	 that	 could	be	 exploited	 in	 the	
data.	 There	 is	 temporal	 information	 because	 we	 use	
sequences	 of	 frames,	 which	 record	 the	 state	 of	 the	
particles	with	respect	to	time.	Noise	is	possible	but	very	
rare	 according	 to	 empirical	 rules.	 	They	occur	because	
random	initial	configuration	may	lead	to	results	different	
than	expected.	For	instance,	a	supposedly	boring	set	of	
rules	might	seemingly	generate	glider	patterns	given	a	
particular	initial	configuration.		

Q3:		What	is	the	Memory	Equivalent	Capacity	for	the	
data	(as	a	dictionary).	What	is	the	expected	Memory	
Equivalent	Capacity	for	a	neural	network?	
We	have	2100	 images	 in	 total,	and	 the	classification	of	
each	 image	 requires	 1	 bit	 since	 there	 are	 two	 classes.	
Therefore,	the	Memory	Equivalent	Capacity	for	the	data	

5

is	2100	bits.	The	expected	Memory	Equivalent	Capacity	
for	a	neural	network	is	provided	by	Brainome.ai,	which	
is	11034	bits.	Additionally,	we	computed	the	worst-case	
Memory	 Equivalent	 Capacity	 with	 the	 formula	
(log2(thresholds	+	1)	*	d),	which	results	in	993317	bits.		

Q4:	What	 is	 the	expected	generalization	 in	bits/bit	
and	as	a	consequence	the	average	resilience	in	dB?	Is	
that	 resilience	 enough	 for	 the	 task?	 How	 bad	 can	
adversarial	examples	be?	Do	we	expect	data	drift?	
The	average	resilience	is	not	covered	this	semester.		

Q5:	 	 Is	 there	 enough	data?	What	 does	 the	 capacity	
progression	look	like?	
Yes,	 we	 have	 enough	 data.	 We	 are	 getting	 high	 test	
accuracy	when	we	use	50%	of	our	interesting	data	and	
high	test	accuracy	for	the	10%	interesting	test	set	as	well.		

According	 to	 the	 results	 from	Brainome.ai	when	 using	
feature	 extracted	 data,	 the	 capacity	 progression	 (#	 of	
decision	points)	is	[8,	9,	10,	11,	11,	12].		

Q6:	 	 Train	 your	 machine	 learner	 for	 accuracy	 at	
memory	 equivalent	 capacity.	 Can	 you	 reach	 near	
100%	memorization?	If	not,	why	(diagnose)?	
Yes,	we	can	increase	the	number	of	layers	and	neurons,	
which	will	allow	us	to	reach	Memory	Equivalent	Capacity	
easily.		

Q7:	Train	your	machine	 learner	 for	generalization:	
Plot	 the	 accuracy/capacity	 curve.	 What	 is	 the	
expected	 accuracy	 and	 generalization	 ratio	 at	 the	
point	 you	 decided	 to	 stop?	 Do	 you	 need	 to	 try	 a	
different	 machine	 learner?	 How	 well	 did	 your	
generalization	 prediction	 hold	 on	 the	 independent	
test	data?	Explain	results.	How	confident	are	you	in	
the	results?		
We	defined	the	model’s	generalization	capacity	G	to	be		

G	=	!
"
	

where	N	 is	 the	number	of	correctly	classified	points	 in	
the	test	set	and	C	is	the	worst-case	Memory	Equivalent	
Capacity	of	the	model.			
	
The	 formula	 (log2(thresholds	 +	 1)	 *	 d)	 is	 used	 to	
compute	the	Memory	Equivalent	Capacity.	We	used	900,	
1200,	1500,	1800,	and	2100	(the	entire	data	set)	stitched	
images	 for	 training,	 and	 generated	 different	 test	
accuracies	 and	 Memory	 Equivalent	 Capacity,	 which	 is	
illustrated	in	Figure	1.4.	We	tuned	the	hyperparameters	
(more	detailly	described	in	Section	3.2)	to	improve	the	
accuracy.	 The	 model	 generalizes	 our	 data	 very	 well,	
which	 is	shown	in	the	 increasing	recall	ratios	and	high	
test	accuracies	in	Figure	1.5.			

	

Figure	1.4:	Generalization	vs.	Memory	Equivalent	
Capacity	

	
Figure	1.5:	Recall	Ratio	vs.	Memory	Equivalent	Capacity	

Q8:	 Comment	 on	 any	 other	 quality	 assurance	
measures	possible	to	take/the	authors	should	have	
taken.	Are	there	application-specific	ones?	
Some	quality	assurance	measures	we	could	have	taken	
include	 increasing	 the	 number	 of	 annotators,	 avoiding	
adding	 too	 many	 obviously	 boring	 rules	 (e.g.,	 grid	
turning	 into	 all	 alive	 or	 dead),	 and	 finding	 more	
interesting	 rules	 randomly	 rather	 than	 depending	 on	
lexicons.	

6	 	CONCLUSIONS	
Cellular	automata	are	useful	 for	modelling	complicated	
nonlinear	 systems	 in	 technical	 industries.	 Rules	 that	
generate	glider	patterns	can	potentially	benefit	existing	
biology	 and	 physics	 models.	 Furthermore,	 cellular	
automata	 have	 a	 gigantic	 fan	 base	who	 are	 constantly	
looking	 for	 interesting	 patterns.	 Due	 to	 cellular	
automata’s	 enormous	 search	 space,	 it	 is	 inefficient	 for	
humans	or	other	 computer	programs	 to	 systematically	
do	 the	 task.	 Neural	 networks	 provide	 an	 alternative	
approach	to	solve	the	problem.	Due	to	their	capability	to	
learn	after	the	training	phase,	they	have	the	potential	to	

6

automatically	 detect	 the	 interesting	 cellular	 automata	
patterns.		

Cellular	 automata	 have	 been	 heralded	 for	 over	 seven	
decades	 as	 a	 possible	 path	 to	 artificial	 general	
intelligence.	 Artificial	 General	 Intelligence	 (AGI)	 is	
considered	by	many	to	be	the	holy	grail	of	AI	research,	
considered	by	some	to	be	mankind’s	next	giant	leap.	AGI	
differs	 from	 classic	 AI	 systems	 because	 it	 is	
generalizable.	 Although	 AI	 systems	 display	 great	 and	
often	 superhuman-like	 abilities	 on	 prescribed	 tasks,	
there	 has	 not	 yet	 been	 a	 system	 that	 has	 been	 able	 to	
learn	any	task	with	few	learning	examples.	There	are	no	
standardized	 requirements	 for	 an	 AI	 system	 however	
most	 theorists	 discussing	 AGI	 put	 the	 following	
requirements	to	the	system:	
● Evolution	Assumption:	The	system	must	be	able	

to	evolve.	
● Generalization	Assumption:	The	system	must	be	

able	to	generalize.	
● Learning	Assumption:	The	system	must	optimize	

for	a	large	swath	of	tasks.	
● Anthropocentric	(Core	Knowledge)	Assumption:	

The	system	must	be	able	encode	human-like	prior	
knowledge.	

In	 the	 mid	 20th	 century,	 John	 Von	 Neumann	 laid	 the	
foundations	 of	 the	mechanism	 that	 AGI	 could	 be	 built	
upon,	 and	 that	 mechanism	 was	 based	 on	 cellular	
automata.	His	mechanism,	called	a	universal	constructor,	
is	 a	 cellular	 automata-based	 system	 capable	 of	 self-
replication	 and	 evolution.	 Between	 instances	 of	 self-
replication,	perturbations	 could	be	 introduced	 into	 the	
system	 causing	 small	 changes	 in	 “phenotype.”	 This	
system	was	a	proof	of	concept	and	a	powerful	one.	As	of	
yet,	 nobody	 has	 implemented	 a	 universal	 constructor	
capable	of	 facilitating	AGI,	but	 it	 is	evident	how	such	a	
device	 could	 be	 instrumental	 in	 allowing	 evolution,	
generalization,	and	learning.	

Despite	 the	 large	 amount	 of	 effort	 and	 study	 that	 has	
been	put	into	cellular	automata,	there	is	still	much	that	is	
unknown.	The	space	of	possible	rules	 is	 infinite,	so	the	
task	of	determining	the	interesting	ones	is	pertinent	to	
the	continued	development	of	cellular	automata	theory.	
We	 have	 put	 forth	 a	 brute	 force	 solution.	 While	 our	
process	 is	 relatively	 computationally	 inefficient,	 it	 is	 a	
good	 place	 to	 start.	 For	 the	 continued	 development	 of	
cellular	 automata	 theory	 and	 the	 quest	 for	 AGI,	 we	
believe	our	algorithm	can	be	a	useful	tool	to	bolster	the	
unsearched	frontier.	

7	 	CONTRIBUTIONS
Qitian’s	 role	 in	 this	project	was	 to	stitch	 images,	build,	
improve,	 and	 analyze	 CNN	 models,	 do	 the	 feature	

extractions,	feed	data	into	Brainome.ai,	and	create	code	
for	entropy	evaluations.		

First,	 Qitian	 created	 an	 algorithm	 in	 python	 to	 stitch	
frames	 100-108	 of	 each	 pattern	 into	 3×3	 images	 and	
store	them	in	designated	directories.	Then	Qitian	built	a	
vanilla	 CNN	 model	 with	 four	 layers.	 Later,	 he	 also	
participated	in	the	hyperparameter	tuning	process	with	
Randy.		

For	 feature	 extraction,	 Qitian	 wrote	 a	 script	 using	
NASNetLarge	 and	 generated	 1000	 features	 for	 each	 of	
the	stitched	 images.	He	stored	the	data	 in	a	styled	CSV	
file,	 fed	 it	 into	 Brainome.ai,	 and	 got	 useful	 results	 for	
further	analysis.		

Inspired	 by	 Professor	 Friedland’s	 feedback	 during	 the	
project	 presentation,	 Qitian	 also	 wrote	 a	 script	 for	
entropy	 evaluation,	 which	 is	 later	 used	 by	 Randy	 to	
analyze	the	entropies	of	interesting	and	boring	patterns.		

Randy’s	 role	 in	 this	 project	 was	 to	 create	 the	 data	
collection	 pipeline	 from	 scratch	 and	 optimize	 Qitian’s	
vanilla	CNN	model.	Randy	also	analyzed	the	entropy	of	
the	stitched	images,	assisted	with	model	measurements,	
and	modified	Qitian’s	feature	extracted	dataset	so	that	it	
could	be	fed	into	Brainome.ai.	

For	 the	 data	 collection	 pipeline,	 Randy	 had	 to	 build	 it	
from	scratch	since	there	are	no	pre-existing	datasets	for	
this	 particular	 project	 topic.	 After	 manually	 collecting	
boring	 and	 interesting	 rules	 and	 implementing	 a	
generalized	 version	 of	 the	 2D	 outer	 totalistic	 cellular	
automata	algorithm,	he	generated	a	dataset	 containing	
approximately	80,000	images.	

He	also	took	the	data	from	the	pipeline	and	tuned	Qitian’s	
CNN	 to	 classify	 it.	 This	 CNN	 included	 dozens	 of	
hyperparameters,	each	one	needing	tuning.	In	the	form	
of	 a	 manual	 grid-search,	 Randy	 found	 the	 right	
combination	of	hyperparameters	that	optimized	the	CNN	
for	its	classification	task.	

The	 testing	 phase	 was	 designed	 by	 Randy.	 	 He	 was	
responsible	for	deciding	how	best	to	evaluate	the	system.	
This	required	some	critical	thinking	about	the	best	way	
to	measure	success	and	how	to	split	up	the	dataset	into	
training,	test,	and	validation	data.	

REFERENCES
[1] http://psoup.math.wisc.edu/mcell/rullex_gene.html
[2] http://math.hws.edu/xJava/CA/EdgeOfChaos.html
[3] http://psoup.math.wisc.edu/mcell/rullex_life.html

7

[4]https://towardsdatascience.com/emergence-how-artificial-
general-intelligence-can-be-computationally-modeled-
b5fea4797028
[5] https://softology.com.au/index.htm	
	
	
	

