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ABSTRACT 

The procedural CAD tool developed in this project can be 

used to construct complex geometries via scripts, 

interactively modify the rendered geometries in the 

graphical user interface (GUI), and save key modifications 

back into the file as reusable code. After conducting a need-

finding study, it became clear that this tool may be 

beneficial to graphics programmers and, more generally, 

people who are interested in 3D modelling but would prefer 

to stay in a programing environment. There is an 

opportunity to build a CAD tool that is both procedural and 

interactive; the prototype tool developed in this project 

attempts to bridge these two modelling approaches by 

implementing a new CAD language and an innovative GUI 

that can handle interactive changes. 
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MOTIVATION 

There are many existing CAD tools out there in the market, 

such as Blender, OpenSCAD, Maya, and SolidWorks; 

however, these tools do not strike a good balance between 

procedural shape creation and interactive GUI editing 

capabilities. For example, Maya and Blender rely heavily 

on a click and drag graphical user interface, which is 

imprecise compared to a definitive modeling method. 

Requiring a modeler to move objects and vertices around 

on the screen often makes it difficult to create geometric 

free-form shapes. 

OpenSCAD, an open source script-based 3D modelling 

tool, allows users to generate shapes and define 

relationships among various shapes (e.g. how they are 

modified via intersection, difference, and envelope 

combination functions). However, OpenSCAD has several 

limitations that make the tool insufficient for complex 

artistic tasks; for example, the tool has a limited set of 2D 

and 3D shape generators, containing only basic primitives 

such as a circle, square, cube, and cylinder generators [1]. 

This limitation makes it difficult for users to construct more 

complex shapes such as a torus knot or a snow crystal, both 

shapes which could have been easily created if there were 

pre-existing shape generators of their kind or a language 

construct that saves symmetrical components. 

OpenSCAD’s GUI is inflexible for users who want to 

modify shapes interactively using the mouse cursor. In fact, 

the mouse cursor can only be used for navigating the scene 

in OpenSCAD. This is problematic for non-programmer 

designers who want to customize and configure their 

models after deployment.  Another potential interactive 

flaw of OpenSCAD is its variables are kept constant during 

the entire life cycle, which can be confusing for the user if 

they want to increment variables [2]. 

Blender, a free and open-source 3D modelling tool used in 

many animated films, has recently added in Python 

scripting as an option to automate certain design tasks, but 

the scripting does not preserve the scene hierarchy when the 

objects are rendered. This means changes that are made 

interactively in the GUI cannot be efficiently saved back 

into the code file when the scene is created using their 

Python scripts.  

A programmable CAD tool allows for precise placement of 

shapes in the scene and easily modifiable objects with the 

simple change of defined parameter value. For example, if a 

user wants to adjust the size or number of wheels on a truck 

model, these two tasks could be as trivial as changing a 

parameter’s value when using a programmable CAD tool. 

In programmable CAD, the code itself is text-readable and 

can be reused easily by other designers.  

Despite these strengths, creating organic-looking, 

subdivided shapes is difficult with OpenSCAD and other 

programmable CAD tools in general because these shapes 

are difficult to create by just piecing together simple, rough-

edged primitive objects via code. Thus, the constructive 

solid geometry (CSG) engine OpenSCAD is built upon is 
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not sufficient for all artistic tasks, and there is opportunity 

for designing a programmable CAD tool that incorporates 

both programmatic and interactive GUI capabilities – a tool 

that allows designers to create accurate 3D models while 

still being able to modify it freely in the GUI. This is the 

idea my tool attempts to implement. 

A successful outcome would be a fully working shape 

description language that allows users to create advanced 

mathematical shapes via scripts, combined with a flexible 

interface that gives users to ability to modify shapes in the 

GUI like one could do using more traditional 3D modelling 

tools such as Maya. To differentiate this project further, the 

prototype tool should allow users to commit and save their 

GUI modifications back into the code file, so they can 

avoid redoing manual changes each time the scene is 

loaded. The overarching goal of this project is to design a 

tool to help artists construct mathematically complex 

sculptures with highly symmetrical components more 

easily. 

RELATED WORK 

OpenSCAD is a widely used scripting tool for parametric 

CAD modelling and is most similar to this project’s 

prototype tool. Despite the similarities, OpenSCAD 

attempts to solve a slightly different problem compared to 

this project’s topic; instead of focusing on finding a balance 

between procedural CAD and interactive modeling, 

OpenSCAD focuses more on the CAD aspects of creating 

machine parts [3]. Thus, OpenSCAD is primarily useful as 

a scientific tool for education and research, but not so much 

for 3D artistic design, which is what my tool attempts to 

assist with.  OpenSCAD also lacks many features such as a 

limited selection of advanced shape generators and an 

interface that does not allow shapes to be interactively 

modified by a mouse [1]. 

OpenSCAD’s solution to procedural shape generation has 

several features worth emulating, many of which I have 

adopted or plan to add into my tool. For example, its syntax 

is familiar to most programmers, with variables created by a 

statement with an identifier and assignment with an 

expression and semicolon to denote the end. It also has a 

familiar “include filename” construct that allows users to 

import code from external files, and a variety of 

interpretable mathematical expressions and iterators. There 

are a set of special variables that can help control object 

rendering, such as the $t time variable, which is useful for 

rendering simple animations. 

OpenSCAD also has for loops and standard if statements, 

with a key difference being their for loops do not iterate 

using an incremented variable, but rather can only directly 

iterate through the elements of the vector [2]. This is 

different from most programming languages which give 

users both iteration options. OpenSCAD’s if statements 

work similar to most programming languages, with the first 

return value being the output for the true condition and the 

second being for the else or false condition. OpenSCAD 

uses Constructive Solid Geometry (CSG), which allows a 

modeler to use various Boolean operators to merge together 

shapes and design advanced mechanical parts.  

Blender, as briefly mentioned in the previous section, has 

added scripting support. A Blender user can use Python to 

automate tasks and animate objects in the GUI. However, it 

is impossible to construct a mesh using Blender’s Python 

script, make changes interactively in the generated scene, 

and then save the modifications back into the Python code. 

Therefore, Blender’s Python is not a fully descriptive 

language that can be utilized to create and modify a 

hierarchical scene interactively.  

These past efforts and related tools have not found a good 

balance between procedural mesh generation and 

interactive GUI modifications. 

MOTIVATING TASKS 

There were three main motivating tasks for my prototype 

tool. To provide context, these tasks were designed for 

novice CAD users, specifically users that are interested in 

constructing shapes without utilizing 3D modelling 

software that require a lot of manual shape modifications, 

such as Maya and Blender. The intended users are not 

expert Maya/Blender users, but rather those that are 

interested in 3D modelling and programming, and their 

primary goal is to construct complex shapes while staying 

in a programming environment. 

The first motivating task is to be able to generate shapes 

using pre-defined shape generators from my shape 

description language. The language should be similar to 

OpenSCAD’s but contain additional complex shape 

generators beyond basic 3D primitives, such as a torus knot 

generator. Starting with a blank file and a language 

reference, the user in this first task should be able to 

generate a wide variety (greater than the 6 3D primitives 

OpenSCAD has as default) of primitives and complex 

shapes using a newly defined procedural CAD language, 

and then load the corresponding scene by simply opening 

the file in the GUI. For example, Figure 1 shows 5 shape 

generators the user should be able to make with my 

prototype tool and language. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Circle, Funnel, Bezier, and B-Spline generators  

The second motivating task is to have the user reuse 

components in meshes to create new shapes and avoid 

reimplementation.  The goal of this task is to implement 

shapes without needing to define all the individual points or 

faces; for example, making it so a user does not have to 

define all 8 points of cube. This task would involve first 

defining point entities, and using those points to define a 

face (e.g. a cube face). Then, the user should be able to 

reuse that face to build complex meshes. For example, 

Figure 2 shows how a cube could be constructed using a 

group construct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Creating a cube  

This second task is particularly important because in 

existing 3D procedural CAD modelling tools, there is not a 

robust scene hierarchy in place to keep track of object 

relationships and allow objects to be reused in many 

instances. 

If the shape is defined procedurally with a “group” 

command as shown in Figure 2, it is difficult for existing 

CAD tools to identify the hierarchical relationships present 

within the group and which parameter values to alter when 

the scene is interactively modified in the GUI. This is 

because in many tools, a consequence of rendering the 

scene is the scene gets converted into a flat mesh 

description, making it difficult to save modifications back 

into the hierarchical code. Thus, it would be useful to create 

a language that preserves the scene hierarchy when its 

rendered, and that is what my tool aims to do. 

The third motivating task is to save changes made 

interactively in the GUI back into code, without disturbing 

the code’s readability. This task is differentiating because 

existing 3D procedural CAD tools do not provide the 

functionality to save changes back into a file in real-time. 

Not being able to easily save the changes slows down the 

workflow and makes it difficult to edit programs as the user 

would have to constantly alternate between the GUI screen 

and the code file.  

The program at the start of the interaction for this third task 

would be the GUI with a scene loaded. This task makes 

most sense in the context of constructing shapes 

programmatically, modifying the shapes interactively in the 

GUI, and then trying to save the changes back in the code. 

Specifically, the user should be able to modify the scene 

either using sliders or other features, such as by clicking on 

an “Add Face” button. Then, by clicking a “Commit 

Changes” button, the user could then save the modifications 

into the file. For example, if we removed a face 

interactively in the GUI, it would ideally remove the 

appropriate face initialization from the code  

USER DATA 

For user data, I was primarily focused on collecting data 

that could provide insights on if this procedural CAD tool 

could reduce the amount of effort and time required to 

generate shapes while still allowing users to modify the 

shapes in real-time.   

As discussed in class and in the readings, solution viscosity 

is important for providing flexibility for the user.  A 

cumbersome tool would be one that has few solutions to a 

problem. My tool aims to reduce viscosity by making it 

quick and simple for users to group together shapes via a 

“group” command and create highly complex, symmetrical 

shapes. I attempted to evaluate this by measuring the time 

required for users to complete specific CAD tasks. 

One of the purposes of my tool is to make 3D modelling 

tasks less viscous and more flexible for the user (in regards 



to easily creating the shape and modifying it afterwards), so 

evaluating the amount of effort/time saved when 

implementing shapes and evaluating the effectiveness of the 

interface will allow me to answer my research questions. 

I recruited 2 participants who have some experience using 

3D modelling tools (e.g. Maya, Blender, OpenSCAD, 

Solidworks, etc.) and 1 that had zero experience. 

Participants were recruited from my personal and 

professional network. Among those that have experience 

using 3D modelling tools, I recruited one expert designer 

(someone who has taken Berkeley’s UCBUGG: 3D 

Modelling and Animation course) and a novice user (< 1 

year of experience w/ CAD tools). The participant with no 

prior 3D modelling experience did have some programming 

experience, but no 3D graphics-related experience. I believe 

these participants were somewhat representative of users 

with varying levels of CAD experience. To keep it focused, 

I prepared a list of question before the interviews and took 

in-depth notes, which were useful for analysis. 

I collected data on the time required to complete a simple 

CAD task and a complex CAD task using my prototype tool 

vs OpenSCAD. I also gathered qualitative data and 

opinions on the different interface/language designs, asking 

them what they found most exciting about the tools and 

why. 

Before the interviews, I had the participants install 

OpenSCAD and provided them with a precompiled 

executable of my prototype tool, so they wouldn’t need to 

go through the trouble of building the codebase. 

Afterwards, we met in one-on-one Zoom calls. I started the 

interviews by asking them questions about their background 

and prior experience, collecting relevant demographic 

variables and making sure the participant is a fit for my 

intended population. Then, I provided a 15-minute training 

demo on how to use the tools by showing a dummy 

example of creating a cube using OpenSCAD and my tool.  

I shared my screen and clearly indicated the different 

language syntax used to generate cubes in each respective 

tool. I also provided links and clearly indicated where the 

language documentation is located, so they could easily 

reference them as they worked on their assigned tasks. 

After the demo, I asked them to share their screen, and I 

assigned them a simple task and complex task. 

The simple task was adding a sphere into the scene, and the 

complex task was creating a square pyramid. I asked them 

to complete both tasks using OpenSCAD first, and then 

complete the same task using the prototype tool. 

Completing both tasks using a single tool first was to 

hopefully avoid language syntax confusion, which may 

have arisen from switching back and forth between tools 

and languages. 

CONCLUSION FROM USER DATA 

The participants had OpenSCAD installed and opened 

(specifically, the preview window, toolbar, and editor 

window were opened) and used 

https://www.openscad.org/cheatsheet/ as a language 

reference.  

 

The two experienced participants were able to complete the 

first sphere creation task easily, while the inexperienced 

user felt a bit overwhelmed by the sphere generator syntax 

depicted in the language reference. 

 
  

Figure 3. OpenSCAD Sphere Generator Syntax  

 

The zero experience user said, “I’m not sure which 

parameters are optional and which ones aren’t”. This was 

the case because the OpenSCAD sphere generator has 5 

parameters: radius, diameter, fragment angle in degrees, 

fragment size in mm, and resolution. He mentioned he was 

confused by the definition of the latter 3 parameters, and 

wished the specs “did a better job with parameter 

definitions”. He said, “it’s confusing that [the parameters] 

are not clearly marked as optional”. These findings affected 

how I implemented optional parameters in my CAD 

language, typically prioritizing simplicity over complexity 

or, if the optional parameter is deemed helpful, clearly 

indicating they are optional in the new language reference.  

 

All users opted to create a sphere using the radius 

parameter, and not using the remaining optional parameters 

(e.g. sphere(r=1) was used by the novice user). I recorded 

the amount of time it took each of these participants to 

complete the task with no outside resources except the 

language reference and the text editor, with the recorded 

time beginning when they share their screen and ending 

when the sphere is rendered. The experienced participant 

with > 1 year of experience took ~30 seconds, while the 

novice user took ~30 seconds as well. The user with no 

experience took ~2 minutes due to the amount of time spent 

trying to decipher the sphere syntax. 

 

The second task was to implement a square pyramid on 

OpenSCAD. The experienced participant completed the 

https://www.openscad.org/cheatsheet/


task in 3 minutes, the novice user took 7 minutes, and the 

beginner took 15 minutes (rounded to the nearest minute). 

This task was relatively more difficult than the initial 

sphere task because the participants had to use the 

polyhedron generator and creatively combine points and 

faces. Figure 4 shows an example of a code that would 

generate the square pyramid. 

 

Figure 4. OpenSCAD Square Pyramid  

 

I then asked the participants to redo the cube and square 

pyramid tasks using my prototype tool. Creating a sphere 

using my interactive CAD tool and language took only a 

few seconds for all users. I believe this is because my 

sphere generator only has one parameter, radius, so there 

are no optional parameters that may cause confusion. The 

most experienced participant stated, “the language 

reference is easy to understand”. A potential confounding 

factor is the fact that they had first completed tasks using 

OpenSCAD, which may have made them more comfortable 

with the programmable CAD environment and thus more 

prepared to re-implement the sphere in my prototype 

environment. 

 

I then asked the 3 participants to recreate the square 

pyramid using my tool. This task took them significantly 

longer than when they had done it using OpenSCAD. The 

experienced user was able to complete the task in 6 

minutes, the novice user took 9 minutes, and the beginner 

user took 13 minutes. The reason this task took relatively 

longer is because I haven’t implemented the capability to 

define a vector of point coordinates, so the participants had 

to define each point individually. Despite this, the novice 

user mentioned, “he could see how the mesh construct 

could be used for more complicated shapes”. Figure 5 is an 

example of the code needed to generate the square pyramid 

in my prototype tool. 

 

Figure 5. Prototype Pyramid Code and Generated Pyramid  

To collect more qualitative data, I asked the participants 

about their experience with Maya, Blender, OpenSCAD, 

and SolidWorks, if any; specifically asking them what 

features they found most exciting about the tools. The two 

experienced participants both prefaced by saying they had 

experience using Maya and Blender, but no experience with 

OpenSCAD. The more experienced participant mentioned 

he was aware of the Blender’s Python scripting 

functionality, but found the feature to be “too confusing and 

difficult to set up”. This was surprising given the participant 

came from CS and Computer Graphics background, so had 

extensive experience coding geometry. This insight further 

drove my desire to create a procedural CAD language that 

requires no prior coding experience, which meant reducing 

the amount of complex functions and parameters. 

What else should I know about your project? 

The prototype tool uses event-based programming. There 

are states and when the program detects an event (e.g., a 

user opens the code file in the GUI or selects a vertex), the 

application responds to that event by altering states. The 

three state elements in the codebase are Document, Scene, 

and Renderer as shown in Figure 6. 

 

 



 

 

 

 

 

Figure 6. Codebase Design 

The Document files are in charge of defining the language 

grammar, parsing the code file, and converting the code file 

into an Abstract Syntax Tree (AST). The AST can then be 

used to build the Scene. I used the ANTLR4 library to build 

the grammar with its convenient .g4 file implementation.  

Figure 7 contains a screenshot of the .g4 file used in the 

prototype tool. 

 

Figure 7. ANTLR4 Commands for Prototype Tool  

A key component of the tool is parsing the file. After we 

have constructed the AST using the Document files, we can 

construct the scene using the AST. The code for this AST-

to-Scene conversion first loops over all the commands in 

that file. It visits all the bank and sets first to create all the 

sliders. After it creates all the sliders, it goes through all the 

commands. For each command, it calls 

VisitCommandSyncScene(). This function classifies the 

command into the following 4 types and syncs it with the 

scene:  

1. Dummy (not handled – just a placeholder name)  

2. Entity (the shape generators, including “mesh”) 

3. Instance (group or instance commands) 

4. BankSet (Slider command)  

Figure 8 contains a screenshot of the command type of the 

various commands. 

 

Figure 8. Prototype Command Type 

If the command is an Entity command, we create the 

corresponding entity object. For example, if the entity is a 

polyline, we create a new polyline object that has the entity 

name given. Then, the program adds the entity into the 

scene and connects faces as needed, which is required for a 

mesh entity. Whenever we add an entity, the code inserts 

the entity object into an EntityLibrary dictionary for future 

reference. We only need to reference the entity if it gets 

instantiated.  

The dictionary key is the entity’s name and the value is the 

entity object, which means providing unique names for 

each entity is crucially important to prevent overlap. 

EntityLibrary is useful when we need to retrieve vertex data 

from certain entities. More importantly, the dictionary is 

crucial when we instanciate the entity and need to attach the 

entity to a scene node; this occurs when we need to find the 

entity from the dictionary and then set the scene node’s 

entity to be it.  

The “mesh” command is kind of a special type of entity 

because it is allowed to have subcommands. It is similar to 

“group”; the key difference being “group” is a collection of 

instances while “mesh” is a collection of entities, 

specifically faces. Thus, the “group” command is 

considered an Instance command, while “mesh” is 

considered an Entity command.  

If the command is an Instance command, we make a scene 

node because every instance needs to have a scene node 

that is part of the scene graph and the scene tree. The 

instance can be either an instance of an entity or an instance 

of a group. To determine if it’s an entity vs group, the code 

grabs the second identifier name and tries to find an entity. 

If it finds the entity in the EntityLibrary dictionary, it calls 

sceneNode- >SetEntity(entity), storing the entity as an 

InstanceEntity attribute for the scene node (specifically, 

within each of the scene node’s corresponding scene tree 

nodes).  

If the program doesn’t find an entity that matches the 

identifier, it tries to find a group. If it finds a group, then it 

makes the instance scene node a parent of the existing 

group scene node.  



If the command is a group command, it will create a scene 

node for the group. Importantly, this scene node is created, 

but not connected to the actual scene graph immediately. In 

order for it to be added into the scene graph, the user needs 

to make an instance of the group (similar to how you had to 

make an instance of an entity in order for the entity to be 

attached to a scene node). When you make instance of the 

group (e.g. instance instofG1 G1 endinstance), the code 

finds the group called G1 in the Group dictionary and then 

it makes the instance scene node (named instofG1) its 

parent, and lastly makes SceneRoot the parent of instofG1. 

Thus, now G1 is linked into the scene graph directly.  

Whenever we create a group scene node, what we’re 

actually doing is putting a group scene node into the Groups 

dictionary. Then, we visit each of the group’s 

subcommands. For example, in Figure 9, there are two 

subcommands that are both themselves instance commands. 

Those two subcommands would each create an instance 

scene node which would be instanciated under a group 

scene node. 

A rather innovative component of my tool is the Scene 

Graph and Scene Tree data structures I implemented to 

capture the geometry in the scene. We are, on the fly, using 

these scene nodes to create scene tree nodes that form a 

more useful data structure for rendering. This Scene Tree is 

then fed into the Rendering files to display the scene.  To 

illustrate the difference between these two data structures, 

let’s define an instance of a group called G1. This group 

contains a mesh and polyline instance as seen in Figure 9. 

 

 

 

 

Figure 9. Group with Mesh and Polyline  

Then, the left graph in Figure 10 would be the 

corresponding Scene Graph built (which contains scene 

nodes) and the right graph would be the Scene Tree (which 

contains scene tree nodes). As you can see the Scene Tree 

allows each mesh (e.g. polyline1) to have a unique path for 

each time it’s been instanciated. This is not the case with 

the Scene Graph. The Scene Graph does not have two 

unique paths to polyline1 for example. There is just one 

path. This is problematic if we only used the Scene Graph 

data structure as you can imagine the renderer would not be 

able to figure out what objects to alter in the scene if a 

slider is moved. For example, using just a Scene Graph 

representation, a user may wonder if moving a parameter’s 

slider would alter just instOfG1’s polyline1 or another 

instance of G1’s polyline1. Unfortunately, the slider would 

incorrectly alter both, and that is why we need to construct 

a Scene Tree and use it for rendering. 

To summarize, Scene Tree has a unique path to each object 

in the scene, and this is the key difference between the 

Scene Graph and the Scene Tree; the unique path allows us 

to reuse the same objects without confusing the renderer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Scene Graph and Scene Tree for Figure 9 code 

 

I will now discuss the workflow needed to complete the 

three motivating tasks described in a previous section. The 

first motivating task was to generate a set of shapes using 

pre-defined generators.  

Here are the generators I have implemented for this project: 

Include Files 

Syntax: 

include “file_name.nom”   

 

Description:  

Allows to combine frequently used statements, such as 

specification of surface colors or generally useful geometry, such 

as a triplet of coordinate axes, in special files that can then be 

included with a single-line command.  Another example is: a 

collection of camera, light, and window/viewport specifications 

for the rendering process. 

 

Numerical Parameters and Sliders 

Bank 

Syntax: 

bank bankID   

 set setID1 value1 start1 end1 step_size1  [0,1] 

 ...   

 set setIDN valueN startN endN step_sizeN  [0,1] 

endbank 

 

Description: 

Allows the user to change any numerical value in the file through 

an interactive slider in the GUI. 

setID: the variable to be parameterized. 

value: the initial value of the slider. 

start: the lower bound of the slider. 

end: the upper bound of the slider. 

step_size: the incremental step size of the slider. 

[0,1]: an optional flag to show this slider (1) or skip it (0) in the 

displayed bank. 



Generators 

Point   

Syntax: 

point id (x y z) endpoint 

 

Description: 

Defines a point at the specified x, y, and z coordinates. 

 

Polyline  

Syntax: 

polyline id ( point_idlist ) [closed] [surface surface_id] 

endpolyline 

Description: 

Defines a polyline, a chain of piecewise linear segments. You can 

optionally make it closed, i.e., the last point connects back to the 

first. 

point_idlist: a list of points of the form point1 point2 ... 

 

Face 

Syntax: 

face id (point_idlist) [surface surface_id] endface 

 

Description: 

Defines a face from a list of points.  Front face uses counter-

clockwise winding. 

point_idlist: a list of points of the form point1 point2 ... 

 

Bezier Curve   

Syntax: 

beziercurve id (point_idlist) segs  endbeziercurve 

 

Description: 

Defines a Bezier curve. 

point_idlist: a list of control points of the form:  point1 point2 ... 

segs: the number of segments into which the Bezier curve is 

sampled. 

 

B-Spline   

Syntax: 

bspline id order (point_idlist) segs endbspline 

 

Description: 

Defines a B-spline. 

{order}: integer that sets the B-spline's DEGREE to be {order}-1. 

point_idlist: a list of control points of the form:  point1 point2 ... 

segs: the number of segments into which the B-spline is sampled. 

The number of control points must be greater than or equal to 

{order} 

For closed curves, there must be at least {order}-1 control points. 

 

Mesh  

Syntax: 

mesh id 

 face faceId1 ( point_idlist1 ) endface 

 ... 

 face faceIdN ( point_idlistN ) endface 

endmesh 

 

Description: 

Also creates a collection of faces, which can optionally be colored. 

Faces in a mesh can then be referred to in the rest of the program 

via a hierarchical name: id.faceId. Variable names must be unique 

within a mesh. 

faceId: the name of the face 

point_idlist: a list of points of the form:  point1 point2 ... 

 

Circle  

Syntax: 

circle id (radius segs) endcircle 

 

Description: 

Defines a circle. 

radius: the radius. 

segs: the number of line segments. 

“botcap”: if present, draw the bottom face (with downward 

normal). 

“topcap”: if present, draw the top face on the cylinder.. 

 

Sphere 

Syntax: 

sphere id (radius) endsphere 

 

Description: 

Defines a sphere. 

radius: the radius of the sphere.. 

 

Torus  

Syntax: 

torus id (maj_rad min_rad theta_max  phi_min  phi_max  

theta_segs  phi_segs) endtorus 

 

Description: 

Defines a torus. 

maj_rad: the major radius. 

min_rad: the minor radius of the outer ring. 

theta_max: specified in degrees. The minor cross-section circle is 

swept starting at the x-axis and circles the z-axis by the angle theta 

until thetamax is reached (=< 360). 

phi_min: starting angle in degrees around the minor circle.  

phi_max: terminating angle in degrees around the minor circle. 

0 <= phi_min < phi_max <= 360 (degrees). 

theta_segs: the number of segments along the major radius. 

phi_segs: the number of segments around the minor radius. 

 

Torus Knot  

Syntax: 

torusknot id (symm turns maj_rad min_rad tube_rad circ-segs 

sweep_segs) endtorusknot 

 

Description: 

Defines a torus knot. 

symm: sweeps through the donut hole = rotational symmetry of 

knot 

turns: turns around the donut hole 

maj_rad: the major radius of the donut. 

min_rad: the minor donut radius (tube radius). 

tube_rad: radius of swept circle.  For tube_rad =0, only the sweep 

path is output. 

circ_segs: the number of segments on the circular cross section. 

sweep_segs: the number of segments along the sweep path. 

 

Scene Graph 

Instance 

Syntax: 

instance name object [rotate (rx ry rz){in degrees} ] [scale (sx sy 

sz)]   [translate (tx ty tz)] [surface surface_id] endinstance 



 

 

Description: 

Creates an instance of geometry. One can optionally rotate, scale, 

translate the instance and specify its color. 

object: the name of the primitive, generator, or group that will be 

instantiated. 

surface_id: a specified (RGB) surface color 

 

Group 

Syntax: 

group id 

   instance id1 object_id1 [instance_parameters] endinstance 

   ... 

   instance idN object_idN [instance_parameters] endinstance 

endgroup 

 

Description: 

Defines a collection of instances of primitive objects or other 

groups. Groups are the most general construct to introduce 

hierarchy into a model description. 

id: the name of the instance. 

object_id: the name of the object to be instantiated. 

[instance_parameters]: all the optional parameters discussed 

above. 

 

The second task was to reuse components in mesh to create 

new shapes.  Figure 2 shows the “group” command being 

used. Users could reuse the single face and rotate it to form 

a cube. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Add Face and Committing the Changes  

The third motivating task was to be able to save changes 

back into the code file. In Figure 11, we see an example of 

“Add Face” in action as well as commit changes. As you 

can see, the added face is appended to the bottom of the file 

as a mesh and an instance. 

Figure 12 shows a torus knot wrapped around the torus 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Torus and Torus Knot Code and Scene  
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