
Interactive Procedural CAD Tool

 Randy Fan

EECS Department

UC Berkeley

randyfan@berkeley.edu

ABSTRACT

The procedural CAD tool developed in this project can be

used to construct complex geometries via scripts,

interactively modify the rendered geometries in the

graphical user interface (GUI), and save key modifications

back into the file as reusable code. After conducting a need-

finding study, it became clear that this tool may be

beneficial to graphics programmers and, more generally,

people who are interested in 3D modelling but would prefer

to stay in a programing environment. There is an

opportunity to build a CAD tool that is both procedural and

interactive; the prototype tool developed in this project

attempts to bridge these two modelling approaches by

implementing a new CAD language and an innovative GUI

that can handle interactive changes.

Author Keywords

CAD; Graphics; AST; OpenSCAD; Interactive GUI; Script;

ANTLR; Scene Graph; Scene Tree; Procedural Tool

MOTIVATION

There are many existing CAD tools out there in the market,

such as Blender, OpenSCAD, Maya, and SolidWorks;

however, these tools do not strike a good balance between

procedural shape creation and interactive GUI editing

capabilities. For example, Maya and Blender rely heavily

on a click and drag graphical user interface, which is

imprecise compared to a definitive modeling method.

Requiring a modeler to move objects and vertices around

on the screen often makes it difficult to create geometric

free-form shapes.

OpenSCAD, an open source script-based 3D modelling

tool, allows users to generate shapes and define

relationships among various shapes (e.g. how they are

modified via intersection, difference, and envelope

combination functions). However, OpenSCAD has several

limitations that make the tool insufficient for complex

artistic tasks; for example, the tool has a limited set of 2D

and 3D shape generators, containing only basic primitives

such as a circle, square, cube, and cylinder generators [1].

This limitation makes it difficult for users to construct more

complex shapes such as a torus knot or a snow crystal, both

shapes which could have been easily created if there were

pre-existing shape generators of their kind or a language

construct that saves symmetrical components.

OpenSCAD’s GUI is inflexible for users who want to

modify shapes interactively using the mouse cursor. In fact,

the mouse cursor can only be used for navigating the scene

in OpenSCAD. This is problematic for non-programmer

designers who want to customize and configure their

models after deployment. Another potential interactive

flaw of OpenSCAD is its variables are kept constant during

the entire life cycle, which can be confusing for the user if

they want to increment variables [2].

Blender, a free and open-source 3D modelling tool used in

many animated films, has recently added in Python

scripting as an option to automate certain design tasks, but

the scripting does not preserve the scene hierarchy when the

objects are rendered. This means changes that are made

interactively in the GUI cannot be efficiently saved back

into the code file when the scene is created using their

Python scripts.

A programmable CAD tool allows for precise placement of

shapes in the scene and easily modifiable objects with the

simple change of defined parameter value. For example, if a

user wants to adjust the size or number of wheels on a truck

model, these two tasks could be as trivial as changing a

parameter’s value when using a programmable CAD tool.

In programmable CAD, the code itself is text-readable and

can be reused easily by other designers.

Despite these strengths, creating organic-looking,

subdivided shapes is difficult with OpenSCAD and other

programmable CAD tools in general because these shapes

are difficult to create by just piecing together simple, rough-

edged primitive objects via code. Thus, the constructive

solid geometry (CSG) engine OpenSCAD is built upon is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

UIST 2020, October 20–23, 2020, Minneapolis, MN, USA.

ACM © 2020 Copyright is held by the owner/author(s). Publication rights licensed to

ACM. ACM ISBN 978-1-4503-6708-0/20/04...$15.00.

not sufficient for all artistic tasks, and there is opportunity

for designing a programmable CAD tool that incorporates

both programmatic and interactive GUI capabilities – a tool

that allows designers to create accurate 3D models while

still being able to modify it freely in the GUI. This is the

idea my tool attempts to implement.

A successful outcome would be a fully working shape

description language that allows users to create advanced

mathematical shapes via scripts, combined with a flexible

interface that gives users to ability to modify shapes in the

GUI like one could do using more traditional 3D modelling

tools such as Maya. To differentiate this project further, the

prototype tool should allow users to commit and save their

GUI modifications back into the code file, so they can

avoid redoing manual changes each time the scene is

loaded. The overarching goal of this project is to design a

tool to help artists construct mathematically complex

sculptures with highly symmetrical components more

easily.

RELATED WORK

OpenSCAD is a widely used scripting tool for parametric

CAD modelling and is most similar to this project’s

prototype tool. Despite the similarities, OpenSCAD

attempts to solve a slightly different problem compared to

this project’s topic; instead of focusing on finding a balance

between procedural CAD and interactive modeling,

OpenSCAD focuses more on the CAD aspects of creating

machine parts [3]. Thus, OpenSCAD is primarily useful as

a scientific tool for education and research, but not so much

for 3D artistic design, which is what my tool attempts to

assist with. OpenSCAD also lacks many features such as a

limited selection of advanced shape generators and an

interface that does not allow shapes to be interactively

modified by a mouse [1].

OpenSCAD’s solution to procedural shape generation has

several features worth emulating, many of which I have

adopted or plan to add into my tool. For example, its syntax

is familiar to most programmers, with variables created by a

statement with an identifier and assignment with an

expression and semicolon to denote the end. It also has a

familiar “include filename” construct that allows users to

import code from external files, and a variety of

interpretable mathematical expressions and iterators. There

are a set of special variables that can help control object

rendering, such as the $t time variable, which is useful for

rendering simple animations.

OpenSCAD also has for loops and standard if statements,

with a key difference being their for loops do not iterate

using an incremented variable, but rather can only directly

iterate through the elements of the vector [2]. This is

different from most programming languages which give

users both iteration options. OpenSCAD’s if statements

work similar to most programming languages, with the first

return value being the output for the true condition and the

second being for the else or false condition. OpenSCAD

uses Constructive Solid Geometry (CSG), which allows a

modeler to use various Boolean operators to merge together

shapes and design advanced mechanical parts.

Blender, as briefly mentioned in the previous section, has

added scripting support. A Blender user can use Python to

automate tasks and animate objects in the GUI. However, it

is impossible to construct a mesh using Blender’s Python

script, make changes interactively in the generated scene,

and then save the modifications back into the Python code.

Therefore, Blender’s Python is not a fully descriptive

language that can be utilized to create and modify a

hierarchical scene interactively.

These past efforts and related tools have not found a good

balance between procedural mesh generation and

interactive GUI modifications.

MOTIVATING TASKS

There were three main motivating tasks for my prototype

tool. To provide context, these tasks were designed for

novice CAD users, specifically users that are interested in

constructing shapes without utilizing 3D modelling

software that require a lot of manual shape modifications,

such as Maya and Blender. The intended users are not

expert Maya/Blender users, but rather those that are

interested in 3D modelling and programming, and their

primary goal is to construct complex shapes while staying

in a programming environment.

The first motivating task is to be able to generate shapes

using pre-defined shape generators from my shape

description language. The language should be similar to

OpenSCAD’s but contain additional complex shape

generators beyond basic 3D primitives, such as a torus knot

generator. Starting with a blank file and a language

reference, the user in this first task should be able to

generate a wide variety (greater than the 6 3D primitives

OpenSCAD has as default) of primitives and complex

shapes using a newly defined procedural CAD language,

and then load the corresponding scene by simply opening

the file in the GUI. For example, Figure 1 shows 5 shape

generators the user should be able to make with my

prototype tool and language.

Figure 1. Circle, Funnel, Bezier, and B-Spline generators

The second motivating task is to have the user reuse

components in meshes to create new shapes and avoid

reimplementation. The goal of this task is to implement

shapes without needing to define all the individual points or

faces; for example, making it so a user does not have to

define all 8 points of cube. This task would involve first

defining point entities, and using those points to define a

face (e.g. a cube face). Then, the user should be able to

reuse that face to build complex meshes. For example,

Figure 2 shows how a cube could be constructed using a

group construct.

Figure 2. Creating a cube

This second task is particularly important because in

existing 3D procedural CAD modelling tools, there is not a

robust scene hierarchy in place to keep track of object

relationships and allow objects to be reused in many

instances.

If the shape is defined procedurally with a “group”

command as shown in Figure 2, it is difficult for existing

CAD tools to identify the hierarchical relationships present

within the group and which parameter values to alter when

the scene is interactively modified in the GUI. This is

because in many tools, a consequence of rendering the

scene is the scene gets converted into a flat mesh

description, making it difficult to save modifications back

into the hierarchical code. Thus, it would be useful to create

a language that preserves the scene hierarchy when its

rendered, and that is what my tool aims to do.

The third motivating task is to save changes made

interactively in the GUI back into code, without disturbing

the code’s readability. This task is differentiating because

existing 3D procedural CAD tools do not provide the

functionality to save changes back into a file in real-time.

Not being able to easily save the changes slows down the

workflow and makes it difficult to edit programs as the user

would have to constantly alternate between the GUI screen

and the code file.

The program at the start of the interaction for this third task

would be the GUI with a scene loaded. This task makes

most sense in the context of constructing shapes

programmatically, modifying the shapes interactively in the

GUI, and then trying to save the changes back in the code.

Specifically, the user should be able to modify the scene

either using sliders or other features, such as by clicking on

an “Add Face” button. Then, by clicking a “Commit

Changes” button, the user could then save the modifications

into the file. For example, if we removed a face

interactively in the GUI, it would ideally remove the

appropriate face initialization from the code

USER DATA

For user data, I was primarily focused on collecting data

that could provide insights on if this procedural CAD tool

could reduce the amount of effort and time required to

generate shapes while still allowing users to modify the

shapes in real-time.

As discussed in class and in the readings, solution viscosity

is important for providing flexibility for the user. A

cumbersome tool would be one that has few solutions to a

problem. My tool aims to reduce viscosity by making it

quick and simple for users to group together shapes via a

“group” command and create highly complex, symmetrical

shapes. I attempted to evaluate this by measuring the time

required for users to complete specific CAD tasks.

One of the purposes of my tool is to make 3D modelling

tasks less viscous and more flexible for the user (in regards

to easily creating the shape and modifying it afterwards), so

evaluating the amount of effort/time saved when

implementing shapes and evaluating the effectiveness of the

interface will allow me to answer my research questions.

I recruited 2 participants who have some experience using

3D modelling tools (e.g. Maya, Blender, OpenSCAD,

Solidworks, etc.) and 1 that had zero experience.

Participants were recruited from my personal and

professional network. Among those that have experience

using 3D modelling tools, I recruited one expert designer

(someone who has taken Berkeley’s UCBUGG: 3D

Modelling and Animation course) and a novice user (< 1

year of experience w/ CAD tools). The participant with no

prior 3D modelling experience did have some programming

experience, but no 3D graphics-related experience. I believe

these participants were somewhat representative of users

with varying levels of CAD experience. To keep it focused,

I prepared a list of question before the interviews and took

in-depth notes, which were useful for analysis.

I collected data on the time required to complete a simple

CAD task and a complex CAD task using my prototype tool

vs OpenSCAD. I also gathered qualitative data and

opinions on the different interface/language designs, asking

them what they found most exciting about the tools and

why.

Before the interviews, I had the participants install

OpenSCAD and provided them with a precompiled

executable of my prototype tool, so they wouldn’t need to

go through the trouble of building the codebase.

Afterwards, we met in one-on-one Zoom calls. I started the

interviews by asking them questions about their background

and prior experience, collecting relevant demographic

variables and making sure the participant is a fit for my

intended population. Then, I provided a 15-minute training

demo on how to use the tools by showing a dummy

example of creating a cube using OpenSCAD and my tool.

I shared my screen and clearly indicated the different

language syntax used to generate cubes in each respective

tool. I also provided links and clearly indicated where the

language documentation is located, so they could easily

reference them as they worked on their assigned tasks.

After the demo, I asked them to share their screen, and I

assigned them a simple task and complex task.

The simple task was adding a sphere into the scene, and the

complex task was creating a square pyramid. I asked them

to complete both tasks using OpenSCAD first, and then

complete the same task using the prototype tool.

Completing both tasks using a single tool first was to

hopefully avoid language syntax confusion, which may

have arisen from switching back and forth between tools

and languages.

CONCLUSION FROM USER DATA

The participants had OpenSCAD installed and opened

(specifically, the preview window, toolbar, and editor

window were opened) and used

https://www.openscad.org/cheatsheet/ as a language

reference.

The two experienced participants were able to complete the

first sphere creation task easily, while the inexperienced

user felt a bit overwhelmed by the sphere generator syntax

depicted in the language reference.

Figure 3. OpenSCAD Sphere Generator Syntax

The zero experience user said, “I’m not sure which

parameters are optional and which ones aren’t”. This was

the case because the OpenSCAD sphere generator has 5

parameters: radius, diameter, fragment angle in degrees,

fragment size in mm, and resolution. He mentioned he was

confused by the definition of the latter 3 parameters, and

wished the specs “did a better job with parameter

definitions”. He said, “it’s confusing that [the parameters]

are not clearly marked as optional”. These findings affected

how I implemented optional parameters in my CAD

language, typically prioritizing simplicity over complexity

or, if the optional parameter is deemed helpful, clearly

indicating they are optional in the new language reference.

All users opted to create a sphere using the radius

parameter, and not using the remaining optional parameters

(e.g. sphere(r=1) was used by the novice user). I recorded

the amount of time it took each of these participants to

complete the task with no outside resources except the

language reference and the text editor, with the recorded

time beginning when they share their screen and ending

when the sphere is rendered. The experienced participant

with > 1 year of experience took ~30 seconds, while the

novice user took ~30 seconds as well. The user with no

experience took ~2 minutes due to the amount of time spent

trying to decipher the sphere syntax.

The second task was to implement a square pyramid on

OpenSCAD. The experienced participant completed the

https://www.openscad.org/cheatsheet/

task in 3 minutes, the novice user took 7 minutes, and the

beginner took 15 minutes (rounded to the nearest minute).

This task was relatively more difficult than the initial

sphere task because the participants had to use the

polyhedron generator and creatively combine points and

faces. Figure 4 shows an example of a code that would

generate the square pyramid.

Figure 4. OpenSCAD Square Pyramid

I then asked the participants to redo the cube and square

pyramid tasks using my prototype tool. Creating a sphere

using my interactive CAD tool and language took only a

few seconds for all users. I believe this is because my

sphere generator only has one parameter, radius, so there

are no optional parameters that may cause confusion. The

most experienced participant stated, “the language

reference is easy to understand”. A potential confounding

factor is the fact that they had first completed tasks using

OpenSCAD, which may have made them more comfortable

with the programmable CAD environment and thus more

prepared to re-implement the sphere in my prototype

environment.

I then asked the 3 participants to recreate the square

pyramid using my tool. This task took them significantly

longer than when they had done it using OpenSCAD. The

experienced user was able to complete the task in 6

minutes, the novice user took 9 minutes, and the beginner

user took 13 minutes. The reason this task took relatively

longer is because I haven’t implemented the capability to

define a vector of point coordinates, so the participants had

to define each point individually. Despite this, the novice

user mentioned, “he could see how the mesh construct

could be used for more complicated shapes”. Figure 5 is an

example of the code needed to generate the square pyramid

in my prototype tool.

Figure 5. Prototype Pyramid Code and Generated Pyramid

To collect more qualitative data, I asked the participants

about their experience with Maya, Blender, OpenSCAD,

and SolidWorks, if any; specifically asking them what

features they found most exciting about the tools. The two

experienced participants both prefaced by saying they had

experience using Maya and Blender, but no experience with

OpenSCAD. The more experienced participant mentioned

he was aware of the Blender’s Python scripting

functionality, but found the feature to be “too confusing and

difficult to set up”. This was surprising given the participant

came from CS and Computer Graphics background, so had

extensive experience coding geometry. This insight further

drove my desire to create a procedural CAD language that

requires no prior coding experience, which meant reducing

the amount of complex functions and parameters.

What else should I know about your project?

The prototype tool uses event-based programming. There

are states and when the program detects an event (e.g., a

user opens the code file in the GUI or selects a vertex), the

application responds to that event by altering states. The

three state elements in the codebase are Document, Scene,

and Renderer as shown in Figure 6.

Figure 6. Codebase Design

The Document files are in charge of defining the language

grammar, parsing the code file, and converting the code file

into an Abstract Syntax Tree (AST). The AST can then be

used to build the Scene. I used the ANTLR4 library to build

the grammar with its convenient .g4 file implementation.

Figure 7 contains a screenshot of the .g4 file used in the

prototype tool.

Figure 7. ANTLR4 Commands for Prototype Tool

A key component of the tool is parsing the file. After we

have constructed the AST using the Document files, we can

construct the scene using the AST. The code for this AST-

to-Scene conversion first loops over all the commands in

that file. It visits all the bank and sets first to create all the

sliders. After it creates all the sliders, it goes through all the

commands. For each command, it calls

VisitCommandSyncScene(). This function classifies the

command into the following 4 types and syncs it with the

scene:

1. Dummy (not handled – just a placeholder name)

2. Entity (the shape generators, including “mesh”)

3. Instance (group or instance commands)

4. BankSet (Slider command)

Figure 8 contains a screenshot of the command type of the

various commands.

Figure 8. Prototype Command Type

If the command is an Entity command, we create the

corresponding entity object. For example, if the entity is a

polyline, we create a new polyline object that has the entity

name given. Then, the program adds the entity into the

scene and connects faces as needed, which is required for a

mesh entity. Whenever we add an entity, the code inserts

the entity object into an EntityLibrary dictionary for future

reference. We only need to reference the entity if it gets

instantiated.

The dictionary key is the entity’s name and the value is the

entity object, which means providing unique names for

each entity is crucially important to prevent overlap.

EntityLibrary is useful when we need to retrieve vertex data

from certain entities. More importantly, the dictionary is

crucial when we instanciate the entity and need to attach the

entity to a scene node; this occurs when we need to find the

entity from the dictionary and then set the scene node’s

entity to be it.

The “mesh” command is kind of a special type of entity

because it is allowed to have subcommands. It is similar to

“group”; the key difference being “group” is a collection of

instances while “mesh” is a collection of entities,

specifically faces. Thus, the “group” command is

considered an Instance command, while “mesh” is

considered an Entity command.

If the command is an Instance command, we make a scene

node because every instance needs to have a scene node

that is part of the scene graph and the scene tree. The

instance can be either an instance of an entity or an instance

of a group. To determine if it’s an entity vs group, the code

grabs the second identifier name and tries to find an entity.

If it finds the entity in the EntityLibrary dictionary, it calls

sceneNode- >SetEntity(entity), storing the entity as an

InstanceEntity attribute for the scene node (specifically,

within each of the scene node’s corresponding scene tree

nodes).

If the program doesn’t find an entity that matches the

identifier, it tries to find a group. If it finds a group, then it

makes the instance scene node a parent of the existing

group scene node.

If the command is a group command, it will create a scene

node for the group. Importantly, this scene node is created,

but not connected to the actual scene graph immediately. In

order for it to be added into the scene graph, the user needs

to make an instance of the group (similar to how you had to

make an instance of an entity in order for the entity to be

attached to a scene node). When you make instance of the

group (e.g. instance instofG1 G1 endinstance), the code

finds the group called G1 in the Group dictionary and then

it makes the instance scene node (named instofG1) its

parent, and lastly makes SceneRoot the parent of instofG1.

Thus, now G1 is linked into the scene graph directly.

Whenever we create a group scene node, what we’re

actually doing is putting a group scene node into the Groups

dictionary. Then, we visit each of the group’s

subcommands. For example, in Figure 9, there are two

subcommands that are both themselves instance commands.

Those two subcommands would each create an instance

scene node which would be instanciated under a group

scene node.

A rather innovative component of my tool is the Scene

Graph and Scene Tree data structures I implemented to

capture the geometry in the scene. We are, on the fly, using

these scene nodes to create scene tree nodes that form a

more useful data structure for rendering. This Scene Tree is

then fed into the Rendering files to display the scene. To

illustrate the difference between these two data structures,

let’s define an instance of a group called G1. This group

contains a mesh and polyline instance as seen in Figure 9.

Figure 9. Group with Mesh and Polyline

Then, the left graph in Figure 10 would be the

corresponding Scene Graph built (which contains scene

nodes) and the right graph would be the Scene Tree (which

contains scene tree nodes). As you can see the Scene Tree

allows each mesh (e.g. polyline1) to have a unique path for

each time it’s been instanciated. This is not the case with

the Scene Graph. The Scene Graph does not have two

unique paths to polyline1 for example. There is just one

path. This is problematic if we only used the Scene Graph

data structure as you can imagine the renderer would not be

able to figure out what objects to alter in the scene if a

slider is moved. For example, using just a Scene Graph

representation, a user may wonder if moving a parameter’s

slider would alter just instOfG1’s polyline1 or another

instance of G1’s polyline1. Unfortunately, the slider would

incorrectly alter both, and that is why we need to construct

a Scene Tree and use it for rendering.

To summarize, Scene Tree has a unique path to each object

in the scene, and this is the key difference between the

Scene Graph and the Scene Tree; the unique path allows us

to reuse the same objects without confusing the renderer.

Figure 10. Scene Graph and Scene Tree for Figure 9 code

I will now discuss the workflow needed to complete the

three motivating tasks described in a previous section. The

first motivating task was to generate a set of shapes using

pre-defined generators.

Here are the generators I have implemented for this project:

Include Files

Syntax:

include “file_name.nom”

Description:

Allows to combine frequently used statements, such as

specification of surface colors or generally useful geometry, such

as a triplet of coordinate axes, in special files that can then be

included with a single-line command. Another example is: a

collection of camera, light, and window/viewport specifications

for the rendering process.

Numerical Parameters and Sliders

Bank

Syntax:

bank bankID

 set setID1 value1 start1 end1 step_size1 [0,1]

 ...

 set setIDN valueN startN endN step_sizeN [0,1]

endbank

Description:

Allows the user to change any numerical value in the file through

an interactive slider in the GUI.

setID: the variable to be parameterized.

value: the initial value of the slider.

start: the lower bound of the slider.

end: the upper bound of the slider.

step_size: the incremental step size of the slider.

[0,1]: an optional flag to show this slider (1) or skip it (0) in the

displayed bank.

Generators

Point

Syntax:

point id (x y z) endpoint

Description:

Defines a point at the specified x, y, and z coordinates.

Polyline

Syntax:

polyline id (point_idlist) [closed] [surface surface_id]

endpolyline

Description:

Defines a polyline, a chain of piecewise linear segments. You can

optionally make it closed, i.e., the last point connects back to the

first.

point_idlist: a list of points of the form point1 point2 ...

Face

Syntax:

face id (point_idlist) [surface surface_id] endface

Description:

Defines a face from a list of points. Front face uses counter-

clockwise winding.

point_idlist: a list of points of the form point1 point2 ...

Bezier Curve

Syntax:

beziercurve id (point_idlist) segs endbeziercurve

Description:

Defines a Bezier curve.

point_idlist: a list of control points of the form: point1 point2 ...

segs: the number of segments into which the Bezier curve is

sampled.

B-Spline

Syntax:

bspline id order (point_idlist) segs endbspline

Description:

Defines a B-spline.

{order}: integer that sets the B-spline's DEGREE to be {order}-1.

point_idlist: a list of control points of the form: point1 point2 ...

segs: the number of segments into which the B-spline is sampled.

The number of control points must be greater than or equal to

{order}

For closed curves, there must be at least {order}-1 control points.

Mesh

Syntax:

mesh id

 face faceId1 (point_idlist1) endface

 ...

 face faceIdN (point_idlistN) endface

endmesh

Description:

Also creates a collection of faces, which can optionally be colored.

Faces in a mesh can then be referred to in the rest of the program

via a hierarchical name: id.faceId. Variable names must be unique

within a mesh.

faceId: the name of the face

point_idlist: a list of points of the form: point1 point2 ...

Circle

Syntax:

circle id (radius segs) endcircle

Description:

Defines a circle.

radius: the radius.

segs: the number of line segments.

“botcap”: if present, draw the bottom face (with downward

normal).

“topcap”: if present, draw the top face on the cylinder..

Sphere

Syntax:

sphere id (radius) endsphere

Description:

Defines a sphere.

radius: the radius of the sphere..

Torus

Syntax:

torus id (maj_rad min_rad theta_max phi_min phi_max

theta_segs phi_segs) endtorus

Description:

Defines a torus.

maj_rad: the major radius.

min_rad: the minor radius of the outer ring.

theta_max: specified in degrees. The minor cross-section circle is

swept starting at the x-axis and circles the z-axis by the angle theta

until thetamax is reached (=< 360).

phi_min: starting angle in degrees around the minor circle.

phi_max: terminating angle in degrees around the minor circle.

0 <= phi_min < phi_max <= 360 (degrees).

theta_segs: the number of segments along the major radius.

phi_segs: the number of segments around the minor radius.

Torus Knot

Syntax:

torusknot id (symm turns maj_rad min_rad tube_rad circ-segs

sweep_segs) endtorusknot

Description:

Defines a torus knot.

symm: sweeps through the donut hole = rotational symmetry of

knot

turns: turns around the donut hole

maj_rad: the major radius of the donut.

min_rad: the minor donut radius (tube radius).

tube_rad: radius of swept circle. For tube_rad =0, only the sweep

path is output.

circ_segs: the number of segments on the circular cross section.

sweep_segs: the number of segments along the sweep path.

Scene Graph

Instance

Syntax:

instance name object [rotate (rx ry rz){in degrees}] [scale (sx sy

sz)] [translate (tx ty tz)] [surface surface_id] endinstance

Description:

Creates an instance of geometry. One can optionally rotate, scale,

translate the instance and specify its color.

object: the name of the primitive, generator, or group that will be

instantiated.

surface_id: a specified (RGB) surface color

Group

Syntax:

group id

 instance id1 object_id1 [instance_parameters] endinstance

 ...

 instance idN object_idN [instance_parameters] endinstance

endgroup

Description:

Defines a collection of instances of primitive objects or other

groups. Groups are the most general construct to introduce

hierarchy into a model description.

id: the name of the instance.

object_id: the name of the object to be instantiated.

[instance_parameters]: all the optional parameters discussed

above.

The second task was to reuse components in mesh to create

new shapes. Figure 2 shows the “group” command being

used. Users could reuse the single face and rotate it to form

a cube.

Figure 11. Add Face and Committing the Changes

The third motivating task was to be able to save changes

back into the code file. In Figure 11, we see an example of

“Add Face” in action as well as commit changes. As you

can see, the added face is appended to the bottom of the file

as a mesh and an instance.

Figure 12 shows a torus knot wrapped around the torus

surface.

Figure 12. Torus and Torus Knot Code and Scene

REFERENCES

[1] https://www.openscad.org/cheatsheet/

[2] https://computationalmodelling.bitbucket.io/tools/CSG.

html

[3] https://www.openscad.org/about.html

https://www.openscad.org/cheatsheet/
https://computationalmodelling.bitbucket.io/tools/CSG.html
https://computationalmodelling.bitbucket.io/tools/CSG.html

